
Dynamic Right-Sizing in TCP

Mike Fisk§† Wu-chun Feng§‡

mfisk@lanl.gov feng@lanl.gov

§Los Alamos National Laboratory
†Department of Computer Science & Engineering, University of California, San Diego

‡Department of Computer & Information Science, The Ohio State University

Abstract— With the widespread arrival of bandwidth-intensive ap-
plications such as bulk-data transfer, multi-media web streaming
and computational grids for high-performance computing, networking
performance over the wide-area network has become a critical compo-
nent in the infrastructure. Tragically, operating systems are still tuned
for yesterday’s WAN speeds and network applications. As a result,
a painstaking process of manually tuning system buffers must be un-
dertaken to make TCP flow-control scale to meet the needs of today’s
bandwidth-rich networks. Consequently, we propose an operating sys-
tem technique called dynamic right-sizing that eliminates the need for
this manual process. Previous work has also attacked this problem,
but with less than complete solutions. Our solution is more efficient,
more transparent, and applies to a wider set of applications, including
those that require strict flow-control semantics because of performance
disparities between the sender and receiver.

Keywords— Wide-area networking, TCP, dynamic flow control, com-
putational grid, high-performance networking, auto-tuning

I. INTRODUCTION

In previous work [4], we brought up two fundamen-
tal problems with TCP in high-performance computational
grids and other bandwidth-intensive applications: (1) flow-
control adaptation and (2) congestion-control adaptation. In
order to address the former problem1, grid and networking
researchers have continued the practice of manually opti-
mizing buffer sizes to keep the network pipe full [14], [10],
and thus achieve acceptable performance over the wide-area
network, whether for bulk-data transfer or in support of
computational grids [5], data grids [1], [12], [3], or access
grids [2].

For example, solely by optimizing the buffer sizes of end-
hosts at LANL and NCAR, as well as the LANL firewall
proxy, we were able to increase the delivered throughput
from less than 1 Mb/s to 15-20 Mb/s! However, the ap-
propriate configuration changes could not be made by the
end user who desired to transfer data between the systems.
Instead, system administrators in three different administra-
tive domains had to separately configure their systems to use
larger buffers. Further these systems were manually tuned
for the optimal delay-bandwidth product between LANL
and NCAR, and were therefore not well tuned for other
pairs of sites. The result, is sub-par performance for con-
nections with larger delay-bandwidth products. In addition,
[13] shows that using too large a window for small delay-

This work was supported by the U.S. Dept. of Energy’s Next Generation
Internet - Earth Systems Grid and Accelerated Strategic Computing Initia-
tive - Distance and Distributed Computing and Communication programs
through Los Alamos National Laboratory contract W-7405-ENG-36.

1The latter problem is beyond the scope of this paper and will be ad-
dressed in a future paper.

bandwidth connections can result in an under-availability
of buffers for a concurrent connection with a large delay-
bandwidth product.

A. Related Work

To address these issues, several projects have examined
methods for automatically tuning window sizes and buffers.
The Web100 project has released a modified FTP client that
uses user-space code to send a burst of pings to estimate the
latency and bandwidth at the beginning of a connection and
adjust the windows accordingly [9]. This approach requires
that this measurement code be deployed in each application.
Further, it uses a measurement period before data is sent
and creates extra network traffic that is not controlled by a
congestion avoidance mechanism. Thus, it can only be used
sparingly, such as at the beginning of a connection.

Earlier work in [13] presents kernel modifications for
‘auto-tuning’ a sender’s flow-control window based on the
congestion window and then using fair-share algorithms to
manage competition between connections for buffers. In
this scheme, the receiver’s window advertisements are su-
perfluous. In contrast, our work shows that properly siz-
ing the receiver’s window, and consequently the sender’s
buffers, can yield better performance than always setting
windows to a large value.

B. Contributions

The first contribution of this paper is an analysis of how
over-subscription of receiver buffers, as suggested in [13],
in conjunction with some bandwidth-intensive applications,
can lead to the starvation of competing connections. Sec-
ond, we show how a receiver can measure the round-trip
time without sending any data. Third, we show how a
TCP receiver can then measure the approximate size of a
sender’s congestion window, so that the receiver can adver-
tise a window that does not needlessly constrain through-
put. In contrast to the Web100 work, neither measurement
requires transmitting any extra measurement traffic. Fi-
nally, we present an implementation in the Linux kernel in
which a sender and receiver use this information to dynam-
ically adjust their window sizes appropriately. Our analysis
shows that not only does dynamically adjusting windows
help high-performance connections, but that it reduces the
number of retransmits needed on low-bandwidth connec-
tions.

The result is a system which, like AutoNCFTP [9], elimi-

1



nates flow control as a bottleneck to high performance, bulk
data transfers. However, our implementation automatically
benefits not just FTP, but every application on a host, in-
cluding the increasing number of applications used to sup-
port computational grids, data grids, and access grids. Our
technique complements the ‘auto-tuning’ presented in [13]
by providing the receiver with the ability to measure the size
of the sender’s congestion window. With this information,
the receiver can more fairly allocate buffers to connections
based on their need for buffers. As we will show in Section
II, this becomes an issue when the throughput of the receiv-
ing application is bounded by factors other than the network.
In contrast to [13], our approach does not change the se-
mantics or usage of TCP flow-control. At the same time,
our technique makes no changes to the congestion avoid-
ance mechanisms of TCP or the fairness of the systems us-
ing them.

C. Paper Organization

In Section II we describe why dynamic right-sizing is
necessary and addresses problems not solved by [13]. In
Section III we present the fundamental mechanisms of dy-
namic right-sizing and in Section IV we describe its imple-
mentation. In Section V present our experimental results
and we present our conclusions in Section VI.

II. RECEIVERS NEED CONSERVATIVE WINDOWS

The ‘Auto-tuning’ proposal in [13] suggests that TCP re-
ceivers should always advertise arbitrarily large windows.
To do so, they must over-subscribe their buffer space under
the assumption that receiver-side buffer space is only min-
imally used under most circumstances since the amount of
buffer space used on the receiver due to loss or reordering in
the network is bounded by the size of the sender’s conges-
tion window.

However, there is another case to consider. When the re-
ceiving application, rather than the sender or network, is the
bottleneck, the receiver needs flow control. Otherwise, un-
bounded amounts of receiver buffer space can be consumed
by data that has been received and acknowledged by the op-
erating system, but is waiting for the receiving application.
In this case, buffer usage is not bounded by the sender’s con-
gestion window and a single connection could use all avail-
able buffers and starve other connections for an indefinite
period of time. One instance of this case is the archival stor-
age used by many data grids. Very large datasets are com-
monly stored on relatively slow, archival storage media in
systems such as HPSS. The high-performance systems and
caches that access this storage can saturate numerous stor-
age devices simultaneously, even over a wide-area network
[8]. This disparity between receiver and sender performance
is characteristic of applications that require flow control.

Unlike a router which can manage its buffers by dropping
any packet that arrives or is already queued, a TCP receiver
cannot drop already acknowledged data. When a receiver
acknowledges data, it is committing that it will hold that
data in buffers for as long as necessary until the receiving

application is ready. There is no opportunity to later drop
that data to make room for higher priority data or other pres-
sures on system memory. Thus, there is a very large penalty
for incorrectly speculating that the application will read the
data before the system runs out of buffers or memory. One
slow application may starve all other connections for indef-
inite periods of time.

As a result, we claim that variable window advertisements
are still necessary to signal to the sender how much more
data the receiver is currently willing to buffer for that con-
nection. Otherwise, the receiver will have to resort to drop-
ping packets and unnecessary triggering of the sender’s con-
gestion avoidance mechanisms, thus wasting bandwidth and
reducing throughput for a prolonged period of time.

But how does the receiver decide what the proper window
size is? To obtain full throughput, the advertised window
must be at least as large as the delay-bandwidth product and
with selective acknowledgements [11], the window should
be no less than twice the delay-bandwidth product [13]. This
rule of thumb allows us to keep data flowing as fast as pos-
sible, while being conservative about over-advertising valu-
able buffer space. This paper presents the theory and imple-
mentation of a receiver that implements this rule.

III. DYNAMIC RIGHT-SIZING

In short, Dynamic Right-sizing lets the receiver estimate
the sender’s congestion window size and use that estimate to
dynamically change the size of the receiver’s window adver-
tisements. We show how to use these updates to keep pace
with the growth in the sender’s congestion window. As a
result, the sender will be congestion-window-limited rather
than flow-control-window-limited. Thus, throughput is con-
strained by the available bandwidth of the network rather
than some arbitrarily set constant value on the receiver.

TCP slow-start causes the sender’s congestion window to
be smaller than the receiver’s advertised window for at least
the first portion of the connection. Thus there is no value
in having the receiver advertise a window larger than the
number of bytes that the sender can send with its current
congestion window.2 Therefore, it is sufficient for the re-
ceiver to advertise a window that is larger than the sender’s
congestion window can become before the receiver’s next
adjustment. Since the congestion window at most doubles
once per round-trip time, knowing the current window size
and round-trip time will allow us to bound the congestion
window.

A. Receiver-side Delay-Bandwidth Measurement

It is trivial to measure the amount of data received in a
fixed period of time and subsequently compute the aver-
age throughput over that period. However, the instantaneous
throughput of a connection seen by a receiver may be larger
than the maximum available end-to-end bandwidth. For in-
stance, data may travel across a slow link only to be queued

2The congestion window is actually measured in packets, but the amount
of bytes is bounded by product of the congestion window and the TCP
maximum segment size.

2



up on a downstream switch or router and then sent to the
receiver in one or more fast bursts. The maximum size of
such a burst is bounded by the size of the sender’s con-
gestion window and the window advertised by the receiver.
The sender can send no more than one window’s worth of
data between acknowledgements. Accordingly, a burst that
is shorter than a round-trip time can contain at most one
window’s worth of data.

Thus, for any period of time that is shorter than a round-
trip time, the amount of data seen over that period is a lower-
bound on the size of the sender’s window. Some data may be
lost or delayed by the network, so the sender may have sent
more than the amount of data seen. Further, the sender may
not have had a full window’s worth of data to send. So the
window may be significantly larger than this lower-bound,
but not if the connection is truly limited by the receiver’s
window. Measuring this minimum and making sure that the
receiver’s advertised window is always larger will let the
receiver track the congestion window size.

To make these measurements, it is necessary for the re-
ceiver to know the round-trip time. In a typical TCP imple-
mentation, the round-trip time is measured by observing the
time between when data is sent and an acknowledgement is
returned [7]. But during a bulk-data transfer, the receiver
might not be sending any data and would therefore not have
a good round-trip time estimate. For instance, an FTP data
connection transmits data entirely in one direction. Thus,
we must develop a technique for measuring the delay from
a system that sends no data.

A system that is only transmitting acknowledgements can
still estimate the round-trip time by observing the time be-
tween when a byte is first acknowledged and the receipt of
data that is at least one window beyond the sequence num-
ber that was acknowledged. If the sender is being throttled
by the network, this estimate will be valid. However, if the
sending application did not have any data to send, the mea-
sured time could be much larger than the actual round-trip
time. Thus this measurement acts only as an upper-bound
on the round-trip time and should be be used only when it is
the only source of round-trip time information.

B. Sender’s Buffers

We have outlined a method for a receiver to enlarge its
window to match the size of the sender’s window. In current
practice, the sender’s buffers are often limited to a fixed size
as well. A functional solution is for the sender and receiver
to work their window sizes up in harmony until they are
sufficient to fill the delay-bandwidth product.

To maintain strict flow control, the sender cannot send
more data than the receiver claims it is ready to receive.
These increases must consequently be initiated by the re-
ceiver. It has already been stated that the receiver will ad-
vertise a window larger than the measured window. Thus
the sender may increase its buffer allocations by tracking the
receiver’s advertisements. This technique will not cause the
sender’s allocations to be out of line with the useful window
size for the particular connection.

In order to keep pace with the growth of the sender’s con-
gestion window during slow-start, the receiver should use
the same doubling factor. Thus the receiver should advertise
a window that is twice the size of the last measured window
size.

C. Window Scaling

TCP only has a 16-bit field for window size. Newer im-
plementations support Window Scaling [6] in which a bi-
nary shift factor (between 0 and 14 bits) is negotiated at
connection setup for each end-point. For the remainder of
the connection, this shift is implicitly applied to all windows
advertised by that end-point.

However, there will be a resulting loss of granularity in
expressing window sizes. For example, if the maximum
window scaling of 14 bits is used, window sizes of 1 gi-
gabyte can be represented, but the granularity will be 16
kilobytes. This makes it impossible to safely advertise a
window size of less than 16 kilobytes as anything other than
0. Consequently, the receiver should use a window that is
substantially larger than the quantum specified by the scal-
ing factor.

In order to support dynamically sized buffers, the receiver
must request, at connection setup, a window scaling suffi-
cient to represent the largest buffer size that it wishes to be
able to use. It must balance this scaling with the ability to
represent smaller window sizes.

IV. IMPLEMENTATION

The algorithms described above were implemented in a
Linux 2.2.12 kernel. To make the receive-throughput mea-
surements, two variables are added to kernel data structures
for each connection. These variables are used to keep track
of the time of the beginning of the measurement and the next
sequence number that was expected at that time.

Upon the arrival of each TCP packet, the current time
is compared to the last measurement time for that connec-
tion. If more than the current, smoothed, round-trip time has
passed, the highest sequence number seen (not including the
current packet) is compared to the next sequence number ex-
pected at the beginning of the measurement. Assuming that
all packets are received in order, the result is the number of
bytes that were received during the period. Packets that are
received out of order may have lowered the goodput dur-
ing this measurement, but will increase the goodput of the
following measurement which, if larger, will supercede this
measurement.

The upper bound placed on the receive buffer space for
that connection is then increased, if necessary, to make sure
that the next window advertised will be at least twice as large
as the the amount of data received during the last measure-
ment period.

A. Receive Buffer

The Linux 2.2 kernel advertises a receive window that is
half as large as the largest permitted receive buffer for that

3



connection. Since data may come from the sender in pack-
ets with payloads anywhere from 1 byte to the maximum
segment size, the receiver can never quite be certain how
much buffer space will be used for a given amount of re-
ceive window. In practice, high-performance connections
use large packets with relatively low storage overhead for
headers. Since the right-sizing algorithm described above
already keeps the buffer size twice as large as the maxi-
mum amount of data received during a round-trip time, the
amount of buffer space allocated is actually four times the
last measurement. This is a short coming in the Linux ker-
nel and is addressed in the Linux 2.4 kernels which advertise
more of their buffer space (the exact fraction is tunable with
the tcp app win parameter). Dynamic right-sizing works
equally well in either case.

In addition, the Linux kernel uses the netdev max
backlog parameter to limit the number of received pack-
ets that have not been processed yet. This value defaults
to 300 and was smaller than the sender’s congestion win-
dow during the experiments shown below. Due to the bursty
nature of TCP and the ability of gigabit Ethernet to deliver
packets very fast, we believe that we were passing this limit
and changed the value to 3000.

Since the application may not have been ready to send for
the entire time period, the estimated window size may be
smaller than the actual window. We therefore use the largest
measured seen during any round-trip interval. This increas-
ing lower-bound is used to estimate the largest window that
the sender may use.

To develop a useful upper-bound on the round-trip time,
we keep track of the minimum round-trip time observed us-
ing passive measurement by the receiver. This minimum is
used only when there is no smoothed, round-trip time (srtt)
available from the standard measurements made when trans-
mitting data.

B. Impact of Timer Imprecision

The primary system timer in Linux is jiffies which is a
global variable incremented periodically as a result of timer
interrupts. This value can be efficiently obtained during
packet handling, but is limited to a precision of 10ms in a
standard kernel. In this section we explore the impact of
using this efficient, but imprecise measure of time.

Assume the salient scenario where a sender is always
sending as fast as possible, but that the network may delay
packets arbitrarily. However, we are concerned with the case
were the sender is limited by the window-size, so that net-
work delays are small enough that no timeouts occur. Fur-
ther assume that the window-size is not fluctuating during
a measurement. Then the receiver can determine that the
window size limiting the sender is bounded as follows:

d

nmax

≤ w ≤
d

nmin

(1)

Where d bytes of data have been received over some number
of round-trip times between nmin and nmax.

t

rttx rttrttrtt y

Fig. 1

COMPOSITION OF A SAMPLING PERIOD (4 < n ≤ 6)

Any measurement period consists of some number of
whole round-trip times plus fractional round-trip times pre-
ceding and following the complete round-trips. These frac-
tions may be of any duration less than the round trip time.
For example, Figure 1 shows a period that must consist of
between 4 and 6 round-trip periods.

The possible number of round-trip periods observed is a
whole number bounded as follows:

⌈

t

rtt

⌉

≤ n <

⌊

t

rtt

⌋

+ 2 (2)

Due to similar fence-post problems, a measurement of du-
ration equal to one round-trip time, but measured in jiffies,
may actually be up to 20ms longer than the round-trip time:

rtt ≤ t ≤ rtt + 20ms (3)

Combining constraints 3 and 2, we can bound n as follows:
⌈

rtt

rtt

⌉

≤ n <

⌊

rtt + 20ms

rtt

⌋

+ 2 (4)

Which reduces to:

1 ≤ n <

⌊

20ms

rtt

⌋

+ 3 (5)

Further substituting the min and max values of n into bound
1 yields:

d
⌊

20ms

rtt

⌋

+ 3
≤ w ≤ d (6)

Thus, in no case will the actual window be larger than the
measured amount of data received during the period. How-
ever, the amount of data received during the period may be
three times the actual window size when measurements are
made across wide-area networks with rtt > 20ms. Further,
local networks with small round-trip delays may be grossly
over-estimated.

We therefore conclude that measurements made with
coarse timers will not cause dynamic right-sizing to un-
derestimate the window size or negatively impact through-
put. However, to make more accurate decisions for mem-
ory sharing under pressure, it is advantageous to use pre-
cise timers. Many CPU architectures now feature hardware
time counters that can be used to efficiently obtain a precise
timestamp. In future versions of our implementation, we
will pursue the use of these counters. However, our use of
these counters will also require that the standard TCP round-
trip time estimation be done with equivalent precision.

4



Default

Right-Sizing

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

M
eg

ab
ty

es

Seconds

Fig. 2

PROGRESS OF DATA TRANSFERS

C. Linux 2.4

It is worth noting that while our implementation was for
Linux 2.2.12, the same algorithms can be easily imple-
mented in the newer 2.4 kernels. The 2.4 kernels contain
new, complementary features designed to reduce memory
usage on busy web servers which are transmitting data on
large numbers of network-bound TCP connections. Under
normal circumstances, the 2.4 kernels restrict each connec-
tion’s send buffers to be just large enough to fill the cur-
rent congestion window. When total memory usage is above
some threshold, the memory used by each connection is fur-
ther restrained. Thus while Linux 2.4 precisely bounds send
buffers, Dynamic Right-Sizing precisely bounds receiver-
side send buffers.

V. EXPERIMENTAL RESULTS

In this section we demonstrate that the receiver’s estimate
of the sender’s congestion window does approximate the ac-
tual size. Further we show that by using this estimate to size
window advertisements, we keep the connection congestion
window-limited rather than receive window-limited.

As expected, the use of larger windows increases per-
formance compared to using smaller, default window sizes.
In Figure 2, 50 transfers of 64 megabytes each were made
with the ttcp program. The first 25 transfers used the de-
fault window sizes of 64 kilobytes for both the sender and
receiver. The second 25 transfers, shown in dotted lines,
used the dynamically sized windows described above. Both
end points have gigabit Ethernet interfaces separated by a
WAN emulator that introduces a 100ms delay in the round-
trip time. The congestion control mechanisms triggered by
packet losses cause the abrupt decreases in slope. The im-
pact of this packet loss has equivalent, inconsequential, ef-
fects on the performance of both cases.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

K
ilo

by
te

s

Seconds

Static window
Static flightsize

Fig. 3

DEFAULT WINDOW SIZE: FLIGHT & WINDOW SIZES

A. Performance

The transfers made with default window sizes took a me-
dian time of 240 seconds to complete. The transfers with dy-
namic windows sizes were roughly 7 times faster and took
a median time of 34 seconds.

In Figures 3 and 4, we examine the window sizes dur-
ing two of the above transfers. The amount of sent, but un-
acknowledged data in the sender’s buffer is known as the
flightsize. The flightsize is in turn bounded by the window
advertised by the receiver.

Figure 3 shows that in the traditional, static case with-
out dynamic right-sizing, the congestion window, and con-
sequently flightsize quickly grow equal to the size of the
window advertisements. For most of the duration of the
connection, it is limited by the receiver’s low window ad-
vertisement of 32KB.

In contrast, during the dynamic right-sizing case shown
in Figure 4, the receiver is able, during most of the connec-
tion, to advertise a window size that is roughly twice the
largest flightsize seen to date. As a result, the flightsize is
only constrained by the congestion window and the delay-
bandwidth product. Slow start continues for much longer
and stops only when there is packet loss. At this point the
congestion window stabilizes on a flightsize that is 7 times
higher than the constrained flightsize of the static case. This
7-fold increase in the average flightsize is the source of the
same, 7-fold increase in throughput demonstrated in Figure
2.

Other tests did occasionally see increased queuing delay
caused by the congestion window growing larger than the
available bandwidth. At this point the retransmit timer ex-
pired and reset the congestion window even though the orig-
inal transmission of the packet was acknowledged shortly
thereafter. In this case, the congestion window is reset to 1
rather than just performing a normal multiplicative decrease.

5



0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

K
ilo

by
te

s

Seconds

Dynamic window
Dynamic flightsize

Fig. 4

DYNAMIC RIGHT-SIZING: FLIGHT & WINDOW SIZES

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

K
ilo

by
te

s

Seconds

Dynamic flightsize
Dynamic window

Fig. 5

LOW-BANDWIDTH LINKS: DYNAMIC CASE

B. Low-Bandwidth Links

In this section, we demonstrate that because dynamic
right-sizing provides the sender with feedback about the
achieved throughput rate, it actually causes a TCP Reno
sender to induce less congestion and fewer retransmissions
over bandwidth-limited connections. Figure 5 shows the
first part of the same transfer over a link that is simulated
to be only 56 kilobits. Here we see that the largest adver-
tised window is under 13 kilobytes.

Figure 6 shows what happens over the same link when
default window sizes are used. Other measurements show
that the two cases get virtually identical throughput. Yet,
the static case appears to usually have more data in flight.
As evidenced by the roughly 20% increase in the number
of retransmissions shown in Figure 7, this additional data
in flight is dropped because the link cannot support that
throughput.

In the static case, the sender has no way to estimate the ca-

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60

K
ilo

by
te

s

Seconds

Static flightsize
Static window

Fig. 6

LOW-BANDWIDTH LINKS: STATIC CASE

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50

C
um

ul
at

iv
e 

R
et

ra
ns

m
its

Seconds

Static
Dynamic

Fig. 7

LOW-BANDWIDTH LINKS: RETRANSMITS

pacity of the link other than to fill the network and its queues
and induce packet loss. Using Dynamic Right-sizing, how-
ever, the sender gets feedback, in the form of window ad-
vertisements, about the actual rate at which packets are re-
ceived. Because the receiver observes that the throughput is
already much less than its window size, it does not increase
its window advertisement and the sender does not double
the number of packets it will send. All this would achieve is
greater queueing delay and probable packet loss.

VI. CONCLUSIONS

The capability for scaling TCP’s flow control windows
has existed for several years, but the use of this scaling has
remained dependent on manual tuning. To address this prob-
lem, we have developed a general method for automatically
scaling the flow control window in TCP. This scalability al-
lows end systems to automatically support increased per-
formance over high delay-bandwidth networks. In turn, we
remove one of the network roadblocks that hinder the use of

6



present and future distributed computing environments, grid
applications, and multi-media.

It has been demonstrated that our method can successfully
grow the receiver’s advertised window at a pace sufficient to
avoid constraining the sender’s throughput. For the partic-
ular circumstances tested, a 7-fold speedup was achieved.
Networks capable of supporting higher throughput would
scale equally well. Meanwhile, the receiver remains in full
control of the flow-control mechanisms. As a result, imple-
mentations that wish to guarantee window availability have
the necessary information to strictly allocate buffers or con-
trol the degree to which they are over-committed. Addi-
tionally, network connections with small delay-bandwidth
products are identified and the receiver can avoid allocat-
ing unnecessarily large amounts of buffer space for these
connections. Thus, our work complements previous work
on buffer sharing [13]. In contrast, however, our work pre-
serves the semantics and common usage of TCP flow control
and better supports applications that depend on flow control
because of performance disparities between the sender and
receiver.

Finally, we showed a case where the use of observed
throughput information to size windows constrains the
sender from raising its congestion window too high. This
prevents some unnecessary queueing delay and packet loss.
The result is far fewer retransmissions.

In summary, we have shown that TCP flow control can be
automatically adapted to support the large delay-bandwidth
network connections needed by computational, data, and ac-
cess grids. In contrast to previous work in this area, we
show that operating systems can automatically determine
the flow-control requirements of individual connections. As
a result, systems can avoid the network performance prob-
lems that result from either the under-utilization or over-
utilization of buffer space.

REFERENCES

[1] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and
Steven Tuecke, “The data grid: Towards an architecture for the dis-
tributed management and analysis of large scientific datasets,” Jour-
nal of Network and Computer Applications, vol. 23, no. 3, pp. 187–
200, July 2000.

[2] Lisa Childers, Terry Disz, Robert Olson, Michael E. Papka, Rick
Stevens, and Tushar Udeshi, “Access grid: Immersive group-to-group
collaborative visualization,” in Proceedings of the 4th International
Immersive Projection Technology Workshop, 2000.

[3] “EU-data grid,” http://www.eu-datagrid.org/.
[4] Wu-chun Feng and Peerapol Tinnakornsrisuphap, “The failure of

TCP in high-performance computational grids,” in SC2000, Nov.
2000.

[5] Ian Foster and Carl Kesselman, The Grid: Blueprint for a New Com-
puting Infrastructure, Morgan-Kaufmann, 1998.

[6] V. Jacobson, R. Braden, and D. Borman, “RFC 1323: TCP extensions
for high performance,” May 1992.

[7] Van Jacobson, “Congestion Avoidance and Control,” in Proceedings,
SIGCOMM ’88 Workshop. ACM SIGCOMM, Aug. 1988, pp. 314–
329, ACM Press, Stanford, CA.

[8] Jason Lee, Dan Gunter, Brian Tierney, Bill Allcock, Joe Bester, John
Bresnahan, and Steve Tuecke, “Applied techniques for high band-
width data transfers across wide area networks,” Tech. Rep. LBNL-
46269, Lawrence Berkeley National Laboratory, Dec. 2000.

[9] Jian Lui and Jim Ferguson, “Automatic TCP socket buffer tuning,” in
SC 2000 Research Gems, Nov. 2000, Awarded “Best Research Gem
of the Conference,” http://dast.nlanr.net/Features/Autobuf/.

[10] Jamshid Mahdavi, “Enabling high performance data transfers on
hosts,” Webpage, http://www.psc.edu/networking/perf tune.html.

[11] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow,
“RFC 2018: TCP selective acknowledgment options,” Oct. 1996, In-
ternet Engineering Task Force.

[12] “Particle physics data grid,” http://www.cacr.caltech.edu/ppdg/.
[13] Jeff Semke, Jamshid Mahdavi, and Matt Mathis., “Automatic TCP

buffer tuning,” Computer Communications Review, vol. 28, no. 4,
pp. 315–323, Oct. 1998.

[14] Brian L. Tierney, “TCP tuning guide for distributed application on
wide area networks,” ;login, vol. 26, no. 1, Feb. 2001.

7


